Optimal vibration control with modal positive position feedback

Author(s):  
A. Baz ◽  
S. Poh
Author(s):  
H. Gu ◽  
G. Song

Positive position feedback (PPF) control is widely used in active vibration control of flexible structures. To ensure the vibration is quickly suppressed, a large PPF scalar gain is often applied in a PPF controller. However, PPF control with a large scalar gain causes initial overshoot, which is undesirable in many situations. In this paper, a fuzzy gain tuner is proposed to tune the gain in the positive position feedback control to reduce the initial overshoot while still maintaining a quick vibration suppression. The fuzzy system is trained by the desired input-output data sets by batch least squares algorithm so that the trained fuzzy system can behave like the training data. A 3.35 meter long I-beam with piezoceramic patch sensors and actuators is used as the experimental object. The experiments include the standard PPF control, standard PPF control with traditional fuzzy gain tuning, and PPF control with batch least squares fuzzy gain tuning. Experimental results clearly demonstrate that PPF control with batch least squares fuzzy gain tuner behaves much better than the other two in terms of successfully reducing the initial overshoot and quickly suppressing vibration.


Author(s):  
Giovanni Ferrari ◽  
Margherita Capriotti ◽  
Marco Amabili ◽  
Rinaldo Garziera

The active vibration control of a rectangular sandwich plate by Positive Position Feedback is experimentally investigated. The thin walled structure, consisting of carbon-epoxy outer skins and a Nomex paper honeycomb core, has completely free boundary conditions. A detailed linear and nonlinear characterization of the vibrations of the plate was previously performed by our research group [1, 2]. Four couples of unidirectional Macro Fiber Composite (MFC) piezoelectric patches are used as strain sensors and actuators. The positioning of the patches is led by a finite element modal analysis, in the perspective of a modal control strategy aimed at the lowest four natural frequencies of the structure. Numerical and experimental verifications estimate the resulting influence of the control hardware on the modal characteristics of the plate. Experimental values are also extracted for the control authority of the piezoelectric patches in the chosen configuration. Single Input – Single Output (SISO) and MultiSISO Positive Position Feedback algorithms are tested and the transfer function parameters of the controller are tuned according to the previously known values of modal damping. A totally experimental procedure to determine the participation matrices, necessary for the Multiple-Input and Multiple-Output configuration, is developed. The resulting algorithm proves successful in selectively reducing the vibration amplitude of the first four vibration modes in the case of a broadband disturbance. PPF is therefore used profitably on laminated composite plates in conjunction with strain transducers, for the control of the low frequency range up to 100 Hz. The relevant tuning procedure moreover, proves straightforward, despite the relatively high number of transducers. The rigid body motions which arise in case of free boundary conditions do not affect the operation of the active control.


Author(s):  
Ehsan Omidi ◽  
S. Nima Mahmoodi

One of the predominant difficulties in the theory of distributed structure control systems comes from the fact that these resonant structures have a large number of active modes in the working band-width. Among the different methods for vibration control, Positive Position Feedback (PPF) is of interest, which uses piezoelectric actuation to overcome the vibration as a collocated controller. Modified Positive Position Feedback (MPPF) is later presented by adding a first-order damping compensator to the conventional second-order compensator, to have a better performance for steady-state and transient disturbances. In this paper, Multivariable Modified Positive Position Feedback (MMPPF) is presented to suppress the unwanted resonant vibrations in the structure. This approach benefits the advantages of MPPF, while it controls larger number vibration modes. An optimization method is introduced, consisting of a cost function that is minimized in the area of the stability of the system. LQR problem is also used to optimize the controller performance by optimized gain selection. It is shown that the LQR-optimized MMPPF controller provides vibration suppression in more efficiently manner.


Sign in / Sign up

Export Citation Format

Share Document